
 

 

Infrastructure 

Operation Report  
June 19, 2017 

 

Deliverable Code: D8.2 

Version: 1.0 –  Final 

Dissemination level: Public 

 

D8.2 is in update of the Infrastructure Operation Report document that was first delivered in 
M18 of the project. D8.2 in particular, focuses in months 19-24 providing an update of the 
activities that took place during this period and the progress towards the goals of WP8 and the 
cloud infrastructure provisioning activities.  

 

 

H2020-EINFRA-2014-2015 / H2020-EINFRA-2014-2 
Topic: EINFRA-1-2014 
Managing, preserving and computing with big research data 
Research & Innovation action 
Grant Agreement 654021 



Infrastructure Operation Report  

• • • 

Public  Page 1 of 20 

Document Description 
D8.2 – Infrastructure Operation Report 

WP8 – Operation and Maintenance   

WP participating organizations: ARC, GRNET 

Contractual Delivery Date: 5/2017 Actual Delivery Date: 6/2017 

Nature: Report Version: 1.0 

Public Deliverable  

 

Preparation slip 
 Name Organization Date 

From Evangelos Floros, 

Stavros Sachtouris, 

Thodoris Sotiropoulos 

Byron Georgantopoulos 

GRNET 16/6/2017 

Edited by Evangelos Floros GRNET 16/6/2017 

Reviewed by Mark Greenwood, Angus 
Roberts 

USFD 16/6/2017 

Approved by Androniki Pavlidou ARC 19/6/2017 

For delivery Mike Chatzopoulos ARC 19/6/2017 

 

 

Document change record 
Issue Item Reason for Change Author Organization 

V0.1 Draft version ToC definition. Contributions in 
Section 2 and 3 

Vangelis Floros GRNET 

V0.2 Draft Contribution to Annexes  Stavros Sachtouris, 
Thodoris 
Sotiropoulos 

GRNET 



Infrastructure Operation Report  

• • • 

Public  Page 2 of 20 

V0.3 Draft Service downtime information. 
Overall document completion. 

Vangelis Floros GRNET 

V0.4 Draft for 
review 

Comments from internal WP8 review Byron 
Georgantopoulos, 
Vangelis Floros  

GRNET 

V0.5 Pre-release Edits after external review Vangelis Floros GRNET 

V1.0 Final Release edits Vangelis Floros GRNET 



Infrastructure Operation Report  

• • • 

Public  Page 3 of 20 

Table of Contents 

1. INTRODUCTION .......................................................................................................................................8 

2. PROJECT RESOURCE PROVISIONING .........................................................................................................9 

 OVERALL RESOURCE UTILIZATION ..................................................................................................................9 

2.1.1 OPENMINTED GENERIC ~OKEANOS PROJECT .......................................................................................................... 9 

2.1.2 OPENMINTED AAI PROJECT ................................................................................................................................ 9 

 VIRTUAL MACHINE PROFILES ...................................................................................................................... 10 

 SERVICE DOWNTIMES ............................................................................................................................... 11 

3. ~OKEANOS AS WORKLOAD EXECUTION AND STORAGE BACKEND ........................................................... 12 

 PITHOS+ INTEGRATION WITH GALAXY ........................................................................................................... 12 

 USING CHRONOS/MESOS AS GALAXY WORKLOAD MANAGER ............................................................................. 12 

 SERVICE DEPLOYMENT AUTOMATION ............................................................................................................ 13 

4. CONCLUSIONS AND PLANNED WORK ..................................................................................................... 15 

5. ANNEX A: PITHOS+ AS GALAXY STORAGE BACKEND ............................................................................... 16 

6. ANNEX B: MESOS FRAMEWORK INTEGRATION WITH GALAXY ................................................................ 17 

7. ANNEX C: AUTOMATED EXECUTION BACKEND SETUP............................................................................. 19 

8. REFERENCES .......................................................................................................................................... 20 

 



Infrastructure Operation Report  

• • • 

Public  Page 4 of 20 

Table of Figures 

Figure 1 - OpenMinTeD project resource utilization...................................................................................................................................... 9 
Figure 2 - Resource allocation for the aai.openminted.grnet.gr project .................................................................................................. 10 
Figure 3 - Workflow execution architecture ............................................................................................................................................... 13 
 

 

 



Infrastructure Operation Report  

• • • 

Public  Page 5 of 20 

Disclaimer 
This document contains description of the OpenMinTeD project findings, work and products. Certain 

parts of it might be under partner Intellectual Property Right (IPR) rules so, prior to using its content 

please contact the consortium head for approval. 

In case you believe that this document harms in any way IPR held by you as a person or as a 

representative of an entity, please do notify us immediately. 

The authors of this document have taken any available measure in order for its content to be accurate, 

consistent and lawful. However, neither the project consortium as a whole nor the individual partners 

that implicitly or explicitly participated in the creation and publication of this document hold any sort 

of responsibility that might occur as a result of using its content. 

This publication has been produced with the assistance of the European Union. The content of this 

publication is the sole responsibility of the OpenMinTeD consortium and can in no way be taken to 

reflect the views of the European Union. 

The European Union is established in accordance with the Treaty 

on European Union (Maastricht). There are currently 28 Member 

States of the Union. It is based on the European Communities 

and the member states cooperation in the fields of Common 

Foreign and Security Policy and Justice and Home Affairs. The five 

main institutions of the European Union are the European 

Parliament, the Council of Ministers, the European Commission, 

the Court of Justice and the Court of Auditors. 

(http://europa.eu.int/) 

 

OpenMinTeD is a project funded by the European Union (Grant Agreement No 654021). 

  

  

  

  



Infrastructure Operation Report  

• • • 

Public  Page 6 of 20 

Acronyms 
IAAS Infrastructure as a Service 
GRNET Greek Research and Technology Network 
VM Virtual Machine 
API Application Programming Interface 
CLI Command Line Interface 
UI User Interface 
REST REpresentational State Transfer 
CPU Central Processing Unit 
SSH Secure Shell 
GUI Graphical User Interface 
EC European Commission 
CPU Central Processing Unit 
RAM Random Access Memory 
OS Operating System 
IP Internet Protocol 
AAI Authentication and Authorization Infrastructure 
IdP Identity Provider 
DRMAA Distributed Resource Management Application API 
GUI Graphical User Interface 
NFS Network File System 
OIDC OpenID Connect 
SAML Security Assertion Markup Language 

  



Infrastructure Operation Report  

• • • 

Public  Page 7 of 20 

Publishable Summary 
This document reports on the activities carried by WP8 in project months 19-24. During this period, the 

activity focused on two aspects of work: the continuing support and provisioning of a stable cloud 

infrastructure and expanding the capabilities of this infrastructure responding to project-specific 

requirements. For what concerns resource provisioning and operations, the task continued with no 

significant issues or problems. Cloud resource consumption has remained at the same levels since no 

service has yet been put into production from the rest of the project activities. A slight increase in 

computing and storage resources have been noted mostly due to the increasing test and development 

activities. During this period, the ~okeanos middleware was upgraded an event which introduced a 

short downtime to the service. This downtime though had only a minor affect on the technical work of 

OpenMinTeD that resides on the cloud. 

Development-wise, WP8 continued with the integration activities of Galaxy with ~okeanos cloud. The 

work on the Pithos+ plugin concluded and currently we are able to use Pithos+ as the object storage of 

Galaxy for storing data and workflow execution datasets. A major challenge was the development of 

the workflow execution backend that would allow Galaxy to seamlessly offload the workload execution 

activities on a pool of computing resources. For this purpose, WP8 investigated possible workload 

management alternatives concluding with the selection of Apache Mesos/Chronos framework as the 

best option for managing the execution of Docker containers as part of Galaxy workflows. The 

necessary plugin logic was developed which allows Galaxy to submit jobs to a Mesos/Chronos which in 

turn exploits a dynamically managed pool of ~okeanos VMs to execute applications. Both the Pithos+ 

plugin as well as the Mesos/Chronos plugin have been pushed to the upstream Galaxy platform 

development and will be officially part of the distribution in the coming months. This way WP8 and 

OpenMinTeD have actively participated in the development and expansion of an open source initiative 

like Galaxy, contributing results that are of benefit to other applications and scientific context.  

Finally, a set of Ansible playbooks have been developed that allow fast deployment of this multistage 

workload execution infrastructure facilitating the setup of multiple similar environments in 

OpenMinTeD for the various required development and testing purposes. 

 

  



Infrastructure Operation Report  

• • • 

Public  Page 8 of 20 

1. Introduction 
WP8 “Maintenance and Operations” is the activity responsible for the establishment and provision of 

cloud computing infrastructure and the relevant supported services, in order to satisfy the computing 

demands of OpenMinTeD. WP8 is a key activity of the project since it provides the computing platform 

where OpenMinTeD’s architecture is materialized and as such this is where the various services live, 

applications run and data resides.  

During the first period of work (M1-M18) the activity mainly focused on establishing the necessary 

base infrastructure and setting up the respective user support procedures. A number of investigative 

activities were carried out on a technical level in an effort to remain proactive and be ready to cover 

potential requirements of the project. The finalization of the project architecture and the selection of 

Galaxy platform as the core workflow execution engine was a major milestone of the project, and in 

particular for WP8, since it helped put the whole role of the cloud infrastructure in context and 

demystified the technical challenges that this infrastructure would be called upon to fulfill. 

This document reports on the activities carried out by WP8 in project months 19-24. During this period, 

the activity focused on two aspects of work: the continuing support and provisioning of a stable cloud 

infrastructure and expanding the capabilities of this infrastructure responding to project-specific 

requirements. By its nature, the work of WP8 falls within a DevOps modus operandi: Development 

activities focus on how to exploit existing APIs in order to enable a functionality that was not available 

before. Operation activities exploit this development effort, putting the results into action and making 

sure that they operate in a level of service quality acceptable for hosting production services. This 

twofold nature is reflected in the structure of this document. In particular Section 2 recaps the 

operational aspect of WP8 whereas Section 3 details the development activities that took place during 

the previous period. Section 4 concludes with a short summary of the achievements and the planned 

work for coming months. The document is complimented by three Annexes (A-C) that offer a more 

technical insight of the development work that was carried out during this period. 

 



Infrastructure Operation Report  

• • • 

Public  Page 9 of 20 

2. Project Resource Provisioning 

 Overall Resource Utilization 

Two ~okeanos Projects have been created by GRNET. The first project registered with the name 

openminted.grnet.gr is dedicated to hosting the OpenMinTeD platform and all the end-user services 

that are being developed in the context of the project. A second project named 

aai.openminted.grnet.gr allocates resources dedicated for the AAI services of OpenMinTeD. 

2.1.1 OpenMinTeD generic ~okeanos project 
The openminted.grnet.gr ~okeanos project provides cloud resources for generic usage in the project. 

So far, the main resource consumption was triggered by development and integration tests related to 

Galaxy and its ecosystem of services (job scheduler, multiple test Galaxy installations, test Registry 

installations etc). At the end of M24 a snapshot of resource consumption was as follows: 

 
Figure 1 - OpenMinTeD project resource utilization 

As can be seen the resource utilization is still relatively low since no production deployment of any of 

the major services (Registry, Workflow) has taken place yet. Also, none of the OpenMinTeD endorsed 

corpora have been transferred into ~okeanos and obviously, the platform has not yet opened to end 

users who are expected to start moving and processing large amounts of data on the cloud. This 

situation is expected to change considerably in the coming months in which period the first production 

versions of the project services will be deployed and offered publicly. In addition, the Open Call for 

applications is expected to place significant demands, especially processing capabilities (and as a result 

requirement for large number of “worker” VMs).  

2.1.2 OpenMinTeD AAI project 
The aai.openminted.grnet.gr ~okeanos project hosts the resources required for the OpenMinTeD AAI 

federation IdP Proxy service. The project currently operates at full capacity having allocated all 

resources made available for this purpose. So far, these resources are sufficient. In case additional 

capabilities are required to be deployed there is a flexibility to expand the available capacity in order to 

satisfy the increased demand. In particular, as of the writing of this report the resource consumption 

was as follows: 



Infrastructure Operation Report  

• • • 

Public  Page 10 of 20 

 

Figure 2 - Resource allocation for the aai.openminted.grnet.gr project 

 

 Virtual Machine profiles 

The following table summarizes the resources utilized by OpenMinTeD projects as of the writing of this 

report. We’ve taken into account stable services running either on production basis or permanent pre-

production services currently used for experimentation and development. 

VM # Role CPU 
cores 

Main Memory 
(GB) 

Volume Storage 
(GB) 

1 Nginx proxy server 4 8 40 

2 Nexus Repository 4 8 40 

3 Build server (Jenkins) 4 8 40 

4 WebAnno server 4 4 20 

5 WP9 Demonstrator 1 8 8 60 

6 WP9 Demonstrator 2 8 8 60 

7 TDM linguistic pipeline 8 8 60 

8 Virtuoso triple store 8 8 60 

9 Galaxy development (INRA) 2 6 40 

10 Galaxy development (GRNET) 2 4 20 

11 OMTD Admin 2 1 20 

12 OMTD NFS 8 8 60 

13 OMTD Galaxy 8 8 60 

14 OMTD Mesos 8 8 40 

15 OMTD Chronos 4 4 40 

16 HTTP Load balancer (nginx) 4 2 5 



Infrastructure Operation Report  

• • • 

Public  Page 11 of 20 

17 HTTP Load balancer 
(nginx/standby) 

4 2 5 

18 SAML (SimpleSAMLphp) 
Account Registry (COmanage) 

4 4 10 

19 SAML (SimpleSAMLphp) 
Account Registry (COmanage) 

4 4 10 

20 Cache (memcached) 1 1 5 

21 Cache (memcached) 1 1 5 

22 DB (postgresql/master) 2 2 20 

23 DB (postgresql/hot standby) 2 2 20 

24 OIDC (MITREid Connect) 4 4 10 

25 OIDC (MITREid Connect) 4 4 10 

26 Backup (barman) 2 2 60 

27 Development 4 8 60 

28 Development 4 8 40 

29 Registry Production 4 8 60 

30 Ontology server 2 4 40 

 Total Resources consumed on by 
OpenMinTeD 

128 (CPU 
cores) 

158 GB 1020 GB 

 

As it can be seen a total of 30 VMs are operating constantly consuming a total of 128~CPU cores, 

158~GB of main memory and 1~TB of persistent storage.  

 Service downtimes 

The ~okeanos service experienced a short downtime for a few hours on May 23 between 08:00 and 

12:00 CEST due to scheduled service maintenance. The maintenance included an upgrade of core 

middleware as well as upgrade of the OS (Debian Linux) on hosting servers. During the downtime, all 

running VMs had to be shutdown. All VMs were brought back online without user intervention once 

the maintenance process completed and the ~okeanos core services became available again. All 

technical members of OpenMinTeD were notified with an email on 11/5 and again on 22/5 in order to 

make aware aware of the incident and prepare any corrective actions in case there were services 

running on VMs that would require graceful shutdown or for services that weren’t configured to start 

unattended after a VM reboot. The WP8 support team remained on standby during the whole process 

to take care of any potential issues that would arise during the downtime. The process completed 

without any major problem and all project VMs came back online unaffected by the downtime. 



Infrastructure Operation Report  

• • • 

Public  Page 12 of 20 

3. ~okeanos as workload execution and storage 

backend 

The Galaxy platform has been selected by the project to form the core of the workflow description and 

execution service. Out of the box Galaxy can support a large range of execution backends including: 

local machines, computing clusters managed by DRMAA [6] compliant resource managers, local docker 

engine and docker swarm enabled pool of VMs. Datasets can be stored on local storage, shared storage 

volumes or cloud storage services such as Amazon S3 or OpenStack Swift [15] compatible services. The 

goal set in the context of WP8 is to seamlessly integrate Galaxy with ~okeanos VM management 

(Cyclades [3]) and object storage service (Pithos+ [5]) in order to allow Galaxy to fully exploit the 

capabilities of the latter regarding workload execution and storage management.   

 Pithos+ integration with Galaxy 

Effort on Pithos+ integration with Galaxy started during the previous months right after the selection of 

Galaxy as the a workflow engine. The goal was to allow Galaxy users to be able to upload data to 

Pithos+ storage, access them during workflow execution and store their intermediate and final results. 

In order to enable the integration, a Pithos+ specific plugin had to be developed expanding in parallel 

the core Galaxy code in order to be able to use it. More detailed technical information about the 

implementation of the plugin is provided in Annex A: Pithos+ as Galaxy storage backend.  The usage of 

Pithos+ as a storage backend is completely transparent to the end user since the integration is done on 

the Galaxy hosting layer by the OpenMinTeD service provider. The plugin code has been pushed 

upstream to the main Galaxy development team and is expected to be included in one of the future 

software releases.  

 Using Chronos/Mesos as Galaxy workload manager 

A major requirement coming from the project is the ability to use ~okeanos computing capabilities in 

order to execute TDM workflows. After the selection of Galaxy as the workflow engine, focus was 

placed on how to use clusters of VMs running on ~okeanos in order to offload the necessary activities. 

For this purpose, multiple options were evaluated and have been reported in D8.1 [13]. Core 

requirement of these activities was that OpenMinTeD application will be packaged and distributed as 

Docker [12] containers, therefore the backend should provide docker engine capabilities. One 

additional requirement is the ability to dynamically alter the number of available computing resources 

(Virtual Machines) in order to be able to handle fluctuating workflow execution demands, either in an 

autonomous or semi-autonomous manner (in which case human intervention would be required). 

The final architecture we have designed and implemented relies on the Mesos/Chronos framework for 

resource scheduling of VMs. Mesos [9] is a cloud resource manager, that integrates with IaaS clouds 

and is responsible for negotiating VM allocation for specific tasks. Chronos [10] is a resource scheduler 



Infrastructure Operation Report  

• • • 

Public  Page 13 of 20 

that accepts workload definitions (jobs), negotiates resources with Mesos and keeps track of job 

execution. This combination of tools was selected among others because they integrate seamlessly 

with ~okeanos, they support docker containers out of the box and are backed by Apache Software 

Foundation ensuring strong community commitment and long term sustainability. 

The final workload execution architecture is depicted in Figure 3. 

 

Figure 3 - Workflow execution architecture 

According to this architecture Galaxy communicates with Chronos passing information and 

requirements about workflow execution. The applications (named “tools” in the Galaxy nomenclature) 

to be executed as part of the workflows are provided in the form of Docker containers. Chronos in turn 

negotiates with Mesos requesting the necessary resources (CPU cores, memory, storage) required for 

running the workflow. Mesos manages a pool of ~okeanos VMs which are configured with the Docker 

engine and thus have the ability to run containers. The pool of VMs share a common file system with 

the VM hosting the Galaxy service. This is required in order to pass input and output data as well as the 

applications themselves. For the time being this shared file system is based on NFS. For production 

environments, with higher demands concerning performance and availability, other more advanced 

solutions could be used such as OrangeFS, BeeFS, ClusterFS etc.  

 Service deployment automation 

The deployment of the architecture depicted in Figure 3 is a tedious process requiring multiple steps. 

Automation of the process is crucial in order to be able to replicate it many times either for setting up 

development environments or for the final production service deployments. For this purpose, we have 



Infrastructure Operation Report  

• • • 

Public  Page 14 of 20 

developed a set of Ansible [16] playbooks that take care of the necessary steps in order to deploy the 

full OpenMinTeD workload execution backend including a Galaxy instance, a Chronos instance, a 

Mesos instance and multiple Docker engine-enabled VMs all configured under a shared file system. 

The playbook is available from Github: https://github.com/openminted/omtd-stack-setup. It requires 

that the user holds an account in ~okeanos service and enough quota to deploy the necessary number 

of VMs and allocate storage and other computing resources necessary for operation (public IP address, 

main memory etc). More information about the playbook and the setup procedure can be found in 

Annex C: Automated execution backend setup. 

  

https://github.com/openminted/omtd-stack-setup


Infrastructure Operation Report  

• • • 

Public  Page 15 of 20 

4. Conclusions and planned work 
During months M19-M24 the WP8 team focused mostly on middleware expansion and integration 

activities. The team was presented with a clear challenge for the cloud infrastructure to efficiently 

support workload execution submitted by Galaxy and also to satisfy the storage requirements of TDM 

applications. The culmination of this work was the integration of Pithos+ with Galaxy on one side, for 

what concerns data management requirements, and the design, development and implementation of a 

workload management architecture based on the Mesos/Chronos framework. Both solutions have 

been put into pre-production as integral part of the services currently tested by OpenMinTeD. This 

work also gave a good incentive for the WP8 team to closely collaborate with Galaxy open source 

development community and contribute to the developments of the software which is gaining 

increased popularity in the context of Life Sciences and TDM scientific communities.  

In the coming months, we will continue working on the expansion and improvement of the 

OpenMinTeD workload backend functionality. As the OpenMinTeD platform is expected to open to the 

broader TDM community more end-users are expected to come increasing the load and utilization of 

the services.  WP8 will also work closely with WP6 in the context of the Monitoring and Accounting 

task. The requirement on the cloud infrastructure is to facilitate monitoring of resource consumption 

by Docker containers running as part of Galaxy workflows. As workflows are submitted from the 

OpenMinTeD portal the infrastructure should allow third party software to probe for and retrieve 

detailed accounting information regarding resource usage both by each individual job as well as 

aggregated for each end-user.  

For what concerns the cloud operations aspect of WP8, no major issues have been noted and the 

provisioning of cloud service continues to run efficiently satisfying the requirements of the project 

technical activities. As with the integration activities, this task is also expected to intensify as 

OpenMinTeD is moving to pre-production state and the platform will open to end users outside of the 

project consortium. This is expected to increase the requirement for cloud resources (VMs and 

storage) as actual workloads will start running on the VMs and corpora will be transferred on the 

storage services. The WP8 support team will continue to support this effort making sure that it will be 

carried unobstructed.  



Infrastructure Operation Report  

• • • 

Public  Page 16 of 20 

5. Annex A: Pithos+ as Galaxy storage backend 
Galaxy has the potential to use various storage backends (e.g., local disk storage, shared file systems, 

cloud storage). A storage backend for Pithos+ is needed in order to fully deploy Galaxy on ~okeanos 

infrastructure. GRNET developed a Pithos+ driver for Galaxy which was offered and accepted as a 

contribution by the Galaxy community (see https://github.com/galaxyproject/galaxy/pull/3611). This 

plugin is a part of the core distribution since Galaxy version 17.05. 

Galaxy provides a template class (“ObjectStore”) allowing third party contributors to develop cloud-

specific storage backends. The Pithos+ backend (“PithosObjectStore”) is implemented as a subclass of 

“ObjectStore”. The “ObjectStore” class describes a number of basic storage operations for handling 

storage objects e.g., “create”, “delete”, “get_data”, “get_filename”, “get_object_url” and others. 

A glance at the internals of the Galaxy storage mechanism reveals a distinction between data sets 

stored at the same host as Galaxy and sets stored remotely i.e. on a cloud. The locally stored data are 

the ones used in actual data process, as they are faster to access, while the cloud is used for 

permanent storage. A simple caching mechanism is implemented to keep local and remote data 

synchronized. 

In specific, connection with Pithos+ is handled through “kamaki”1 [3], while the caching mechanism is 

implemented based on tested implementations for Microsoft Azure and Amazon S3, which are already 

included in Galaxy core. 

Given an existing Galaxy deployment, to enable Pithos+ as backend storage, edit the 

“config/object_store_conf.xml” file accordingly. Assuming a Debian-based host, and the ~okeanos 

cloud as a storage provider, the addition to the config file would be: 

<object_store type="pithos" order="1"> 
      <auth 
            url="https://accounts.okeanos.grnet.gr/identity/v2.0" 
            ca_certs="/etc/ssl/certs/ca-certificates.crt" 
            token="Synnefo-User-Token"/> 
      <container 
            name="galaxy" 
            project="User-project-id-to-provide resources" /> 
             
      <extra_dir type="job_work" path="database/job_working_directory_pithos"/> 
      <extra_dir type="temp" path="database/tmp_pithos"/> 
</object_store> 

 

 

                                                      
1 Kamaki is the Python API library and a command line interface for Synnefo [2] which in turn is the 
software that powers the ~okeanos IaaS cloud 

https://github.com/galaxyproject/galaxy/pull/3611


Infrastructure Operation Report  

• • • 

Public  Page 17 of 20 

6. Annex B: Mesos framework integration with Galaxy  
Galaxy provides a set of plugins (i.e. job runners) for running jobs on many systems such as clusters. 

One of the parts that was missing for the architecture illustrated on Figure 3 is the connection between 

Galaxy and Chronos. For this purpose, we have implemented a new Galaxy job runner for running jobs 

in a Mesos cluster via the Chronos scheduler. The primary responsibilities of this runner were: 

• Creation of new jobs on Chronos. 

• Tracking existing jobs of Chronos. 

• Deletion of failed or succeeded jobs. 

Specifically, when a Galaxy job is ready for launch, this plugin creates the appropriate specification of 

the job (e.g. command to be executed, required resources, docker image, data volumes), it is 

submitted to Chronos which is instructed to run the job immediately on a machine of the cluster. The 

machine is picked through negotiation between Chronos and Mesos. Once a job is registered on 

Chronos, the runner monitors the job state, i.e. running, succeeded or failed. If a job is succeeded then 

the runner marks it as finished and deletes it from Chronos. In the case of a failed job, the runner tries 

to execute this job again. Note that our runner allows Galaxy administrators to define an upper limit of 

retries after a failed job. 

Typically, a Galaxy job consists of a wrapper shell script which Galaxy creates dynamically inside a 

working directory. The actual command which is executed on a container inside a machine of the 

cluster refers to this shell script. In order for the cluster machines to have access to all required data 

(i.e. shell scripts and datasets), the Galaxy working directory is shared between the Galaxy host and the 

execution nodes over an NFS filesystem. The shared directory is mounted on the containers, and the 

job runner adds persistent volumes to the them, so that data created during the execution of the job 

inside the containers persist even after container deletion. In this way, the output of the jobs is 

accessible from Galaxy and its users via the NFS server. 

To activate our job runner in a Galaxy installation, we need to provide a configuration file. Below we 

list a typical configuration for our Chronos runner: 

  



Infrastructure Operation Report  

• • • 

Public  Page 18 of 20 

 

<?xml version="1.0"?> 
<job_conf> 
<plugins> 
        <plugin id="chronos" type="runner" 
load="galaxy.jobs.runners.chronos:ChronosJobRunner" workers="4"> 
            <param id="chronos">openminted.chronos.gr</param> 
            <param id="owner">galaxy@grnet.gr</param> 
            <param id="username">username</param> 
            <param id="password">password</param> 
</plugin> 
</plugins> 
<handlers> 
        <handler id="main"/> 
</handlers> 
    <destinations default="chronos_dest"> 
        <destination id="chronos_dest" runner="chronos"> 
            <param id="docker_enabled">true</param> 
            <param id="volumes">/srv/galaxy/working_directory/</param> 
            <param id="docker_memory">2048</param> 
            <param id="docker_cpu">2</param> 
            <param id="max_retries">1</param> 
</destination> 
</destinations> 
</job_conf> 

 

The global parameters which are valid for all jobs are specified in the “<plugin>” tag, e.g. the host 

where Chronos runs, credentials, etc. Inside “<destinations>”, we can parametrize the specification of 

the jobs. For instance, the above configuration specifies that jobs should run a docker container, with 

2048MB of memory, 2 CPUs, and that the directory /srv/galaxy/working_directory/ (note that 

this directory is accessible from the Mesos cluster) should be mounted on the container. 

Most notably, the job runner that was developed in the context of WP8 is now part of the official 

Galaxy repository on Github. 

 

 

http://openminted.chronos.gr/
mailto:galaxy@grnet.gr


Infrastructure Operation Report  

• • • 

Public  Page 19 of 20 

7. Annex C: Automated execution backend setup 
As described in §3.3 a configuration management tool like Ansible is essential in order to automate the 

setup of services related to workflow execution over a significant number of VMs. Ansible is simple 

enough as it uses YAML syntax to declare the configuration of each machine.  

A user of ~okeanos service can easily setup the architecture in a few minutes using the Ansible 

playbook developed in the context of WP8. The playbook is available from GitHub at the following 

address: https://github.com/openminted/omtd-stack-setup  

Specifically, the steps required are: 

1. Creation of virtual machines at the ~okeanos service using kamaki tool (CLI tool for interacting 

with Synnefo API) i.e. command: “kamaki server create”. Note that the playbook has been 

tested with VMs running Ubuntu 14.04 LTS.  

2. After cloning Ansible playbook, groups of hosts should be specified in a file named “hosts”. This 

is necessary to map machines to services, e.g. machine which run Galaxy, or machines that 

constitute Mesos cluster, etc. Our playbook provides the following groups: 

• nfs_server: The host to run NFS server. 

• nfs_clients: A list of hosts with which NFS server shares directories, i.e. hosts running Galaxy 

and Mesos agents. 

• mesos_masters: Machines to act as Mesos masters. For a high-available Mesos cluster, 

multiple Mesos masters can be specified. 

• mesos_slaves: A list of Mesos slave machines. The machines which are actually are going to 

run the workloads. Since applications are packaged as Docker containers these machines 

provide a Docker Engine execution environment which allows the actual execution of 

submitted containers.  

• chronos: Machine to run Chronos framework. 

• galaxy: Machine that hosts the Galaxy service. 

3. The setup process of the architecture is instantiated with the execution of ansible playbook: 

ansible-playbook -i hosts site.yaml 

 

Note that there are no restrictions regarding the roles of the machines. For example, the same 

machine could host both Mesos master and Chronos. 

 

 

https://github.com/openminted/omtd-stack-setup


Infrastructure Operation Report  

• • • 

Public  Page 20 of 20 

8. References 
  

[1] ~okeanos service home page, http://okeanos.grnet.gr 

[2] Synnefo open source IaaS software stack, http://www.synnefo.org 

[3] Kamaki project documentation, https://www.synnefo.org/docs/kamaki/latest/  

[4] ~okeanos Cyclades Web GUI, http://cyclades.okeanos.grnet.gr 

[5] ~okeanos Pithos+ Web GUI, http://pithos.okeanos.grnet.gr 

[6] OGF DRMAA Working Group, https://www.drmaa.org/ 

[7] Docker Swarm, https://www.docker.com/products/docker-swarm  

[8] Docker Compose, https://docs.docker.com/compose/  

[9] Apache Mesos, http://mesos.apache.org/  

[10] Chronos scheduler, https://mesos.github.io/chronos/  

[11] Galaxy platform, https://wiki.galaxyproject.org  

[12] What is Docker, https://www.docker.com/what-docker 

[13] “D8.1 Infrastructure Operation Report”, The OpenMinTeD consortium, available at 

http://openminted.eu/deliverables/  

[14] Amazon S3 (Simple Storage Service), https://aws.amazon.com/s3/  

[15] OpenStack Swift documentation, https://docs.openstack.org/developer/swift/ 

[16] Ansible, https://www.ansible.com  

 

 

http://okeanos.grnet.gr/
http://www.synnefo.org/
https://www.synnefo.org/docs/kamaki/latest/
http://cyclades.okeanos.grnet.gr/
http://pithos.okeanos.grnet.gr/
https://www.drmaa.org/
https://www.docker.com/products/docker-swarm
https://docs.docker.com/compose/
http://mesos.apache.org/
https://mesos.github.io/chronos/
https://wiki.galaxyproject.org/
https://www.docker.com/what-docker
http://openminted.eu/deliverables/
https://aws.amazon.com/s3/
https://docs.openstack.org/developer/swift/
https://www.ansible.com/

	Document Description
	Preparation slip
	Document change record
	Table of Figures
	Disclaimer
	Acronyms
	Publishable Summary
	1. Introduction
	2. Project Resource Provisioning
	2.1 Overall Resource Utilization
	2.1.1 OpenMinTeD generic ~okeanos project


	Figure 1 - OpenMinTeD project resource utilization
	2.1.2 OpenMinTeD AAI project

	Figure 2 - Resource allocation for the aai.openminted.grnet.gr project
	2.2 Virtual Machine profiles
	2.3 Service downtimes

	3. ~okeanos as workload execution and storage backend
	3.1 Pithos+ integration with Galaxy
	3.2 Using Chronos/Mesos as Galaxy workload manager
	3.3 Service deployment automation

	4. Conclusions and planned work
	5. Annex A: Pithos+ as Galaxy storage backend
	6. Annex B: Mesos framework integration with Galaxy
	7. Annex C: Automated execution backend setup
	8. References
	[1] ~okeanos service home page, http://okeanos.grnet.gr
	[2] Synnefo open source IaaS software stack, http://www.synnefo.org
	[3] Kamaki project documentation, https://www.synnefo.org/docs/kamaki/latest/
	[4] ~okeanos Cyclades Web GUI, http://cyclades.okeanos.grnet.gr
	[5] ~okeanos Pithos+ Web GUI, http://pithos.okeanos.grnet.gr
	[6] OGF DRMAA Working Group, https://www.drmaa.org/
	[7] Docker Swarm, https://www.docker.com/products/docker-swarm
	[8] Docker Compose, https://docs.docker.com/compose/
	[9] Apache Mesos, http://mesos.apache.org/
	[10] Chronos scheduler, https://mesos.github.io/chronos/
	[11] Galaxy platform, https://wiki.galaxyproject.org
	[12] What is Docker, https://www.docker.com/what-docker
	[13] “D8.1 Infrastructure Operation Report”, The OpenMinTeD consortium, available at http://openminted.eu/deliverables/
	[14] Amazon S3 (Simple Storage Service), https://aws.amazon.com/s3/
	[15] OpenStack Swift documentation, https://docs.openstack.org/developer/swift/
	[16] Ansible, https://www.ansible.com

