

OpenMinTeD

Platform services

distribution

specification
January 10, 2017

Deliverable Code: D6.7

Version: 1.1 – Final

Dissemination level: Public

 This report describes and summarizes progress until M18, on specifying and optimizing how
registered TDM services will run and scale on a cloud environment.

H2020-EINFRA-2014-2015 / H2020-EINFRA-2014-2
Topic: EINFRA-1-2014
Managing, preserving and computing with big research data
Research & Innovation action
Grant Agreement 654021

OpenMinTeD Platform services distribution specification

• • •

Public Page 1 of 40

Document Description
D6.7 – OpenMinTeD Platform services distribution specification

WP6 - Platform Design and Implementation

WP participating organizations: ARC, UNIVERSITY OF MANCHESTER, UKP-TUDA, INRA, OU, CNIO,
USFD, GRNET

Contractual Delivery Date: 11/2016 Actual Delivery Date: 1/2017

Nature: Report Version: 1.0

Public Deliverable

Preparation slip
 Name Organization Date

From Byron Georgantopoulos,
Vangelis Floros, Stavros
Sachtouris

GRNET 16/11/2016

Edited by Byron Georgantopoulos GRNET 10/1/2017

Reviewed by Dimitris Galanis

Petr Knoth

ARC

OU

2/1/2017

7/1/2017

Approved by Natalia Manola ARC 10/1/2017

For delivery Mike Chatzopoulos ARC 10/1/2017

Document change record
Issue Item Reason for Change Author Organization

V0.1 Draft version ToC review and finalization Byron
Georgantopoulos,
Evangelos Floros

GRNET

V0.2 Draft version Hadoop ecosystem Byron
Georgantopoulos,

GRNET

V0.3 Draft version Galaxy and Docker integration Byron GRNET

OpenMinTeD Platform services distribution specification

• • •

Public Page 2 of 40

Georgantopoulos,
Evangelos Floros,
Stavros Sachtouris

V0.4 Draft version Final version ready for internal WP6
review

Byron
Georgantopoulos

GRNET

V0.5 Draft version Internal WP6 review comments Dimitris Galanis

Petr Knoth

ARC

OU

V1.0 Final version Incorporating reviewers’ comments.
Extend Introduction

Byron
Georgantopoulos

GRNET

V1.1 Revised
version

Quality verification Byron
Georgantopoulos

GRNET

OpenMinTeD Platform services distribution specification

• • •

Public Page 3 of 40

Table of Contents

1. INTRODUCTION ...9

2. OPENMINTED SERVICES IN A NUTSHELL ... 11

3. DEPLOYING OMTD WORKFLOW SERVICES .. 13

 INTRODUCTION ... 13

 USE CASES ... 13

3.2.1 ACCESSING RESULTS .. 13

3.2.2 RUNNING EXISTING WORKFLOWS .. 13

3.2.3 SETTING UP TDM COMPONENTS AND WORKFLOWS ... 13

3.2.4 CUSTOMIZED CASES .. 13

 SYSTEM OVERVIEW .. 14

3.3.1 THE PORTAL .. 14

3.3.2 THE REGISTRY .. 14

3.3.3 THE GALAXY WORKFLOW ENGINE .. 14

3.3.4 MARATHON/MESOS ... 14

3.3.5 THE PITHOS+ STORAGE BACKEND .. 15

 DOCKERIZING TDM COMPONENTS .. 15

3.4.1 DOCKER TOOLS AND TERMINOLOGY ... 15

3.4.2 DOCKERIZING FOR OPENMINTED ... 16

 ACCESS CONTROL AND ACCOUNTING .. 16

3.5.1 INFRASTRUCTURE LAYER .. 17

3.5.2 OPENMINTED COMPONENTS LAYER .. 17

3.5.3 END USER LAYER ... 17

 OPERATION FLOW AND COMPONENT INTERCONNECTION ... 18

4. DISTRIBUTED PROCESSING AND STORAGE WITH HADOOP ... 20

 INTRODUCTION ... 20

 SCALING WITH MAPREDUCE & HADOOP ... 20

4.2.1 YARN (HADOOP 2.X) ... 21

 HADOOP ON CLOUD INFRASTRUCTURE .. 22

4.3.1 GENERIC ARCHITECTURE .. 22

4.3.2 GRNET CLOUD WITH ~ORKA .. 22

4.3.3 PITHOS+ AS HDFS STORAGE BACKEND ... 23

 CONCLUSION .. 23

5. ANNEX 1: RUN HADOOP ON DOCKER SWARM ... 24

 SETUP UP THE SWARM CLUSTER .. 24

OpenMinTeD Platform services distribution specification

• • •

Public Page 4 of 40

6. ANNEX 2: RUN HADOOP YARN ON SLIDER.. 29

7. ANNEX 3: RUN HADOOP YARN WITH GRNET ~ORKA... 35

 INTRODUCTION ... 35

 INFORMATION ABOUT ~ORKA IMAGES .. 35

 ~ORKA OVERVIEW PAGE .. 35

 CREATING A HADOOP CLUSTER ... 36

 ~ORKA CLI EXAMPLES ... 38

8. REFERENCES .. 40

OpenMinTeD Platform services distribution specification

• • •

Public Page 5 of 40

Table of Figures

Figure 1. Overall Architecture of the OpenMinTeD Platform __ 11
Figure 2: Component of a selected Hadoop image ___ 35
Figure 3: List of all created Hadoop clusters __ 36
Figure 4: Snapshot of ~orka Hadoop creation form __ 37
Figure 5: List of all jobs in Hadoop cluster ___ 38

OpenMinTeD Platform services distribution specification

• • •

Public Page 6 of 40

Disclaimer
This document contains description of the OpenMinTeD project findings, work and products. Certain

parts of it might be under partner Intellectual Property Right (IPR) rules so, prior to using its content

please contact the consortium head for approval.

In case you believe that this document harms in any way IPR held by you as a person or as a

representative of an entity, please do notify us immediately.

The authors of this document have taken any available measure in order for its content to be accurate,

consistent and lawful. However, neither the project consortium as a whole nor the individual partners

that implicitly or explicitly participated in the creation and publication of this document hold any sort

of responsibility that might occur as a result of using its content.

This publication has been produced with the assistance of the European Union. The content of this

publication is the sole responsibility of the OpenMinTeD consortium and can in no way be taken to

reflect the views of the European Union.

The European Union is established in accordance with the Treaty

on European Union (Maastricht). There are currently 28 Member

States of the Union. It is based on the European Communities

and the member states cooperation in the fields of Common

Foreign and Security Policy and Justice and Home Affairs. The five

main institutions of the European Union are the European

Parliament, the Council of Ministers, the European Commission,

the Court of Justice and the Court of Auditors.

(http://europa.eu.int/)

OpenMinTeD is a project funded by the European Union (Grant Agreement No 654021).

OpenMinTeD Platform services distribution specification

• • •

Public Page 7 of 40

Acronyms
OMTD OpenMinTeD
TDM Text and Data Mining
GRNET Greek Research and Technology Network
GEANT Gigabit European Academic Network
AAI Authentication and Authorization Infrastructure
VM Virtual Machine
HCFS Hadoop Compatible File System
HDFS Hadoop Distributed File System
S3 Simple Storage System
FTP File Transfer Protocol
UI User Interface
CORE COnnecting Repositories
OAI-PMH Open Archives Initiative – Protocol for Metadata Harvesting
IAAS Infrastructure as a Service
XML Extensible Markup Language
JSON JavaScript Object Notation
REST REpresentational State Transfer
URL Uniform Resource Locator
RAM Random Access Memory
GB Gigabyte
API Application Program Interface

OpenMinTeD Platform services distribution specification

• • •

Public Page 8 of 40

Publishable Summary
D6.7 reports and summarizes progress until M18, on optimizing OpenMinTeD service deployment and

execution via scalable VM-based services. The described work falls under Layer 3 of the high-level

architecture: interoperability to shared storage and computing resources. As TDM services require big

data technologies to run in parallel and within distributed cloud environments, effort on WP6 has

focused on exploring, experimenting and outlining the following:

• Deployment of OMTD workflow engine and TDM components (tools & services) that

constitute the workflow, on cloud infrastructures,

• Handling scaling requirements, i.e. data size, parallel users, performance, etc.

OpenMinTeD Platform services distribution specification

• • •

Public Page 9 of 40

1. Introduction
OpenMinTeD aspires to create an infrastructure that fosters and facilitates the use of text and data

mining technologies in the scientific publications world and beyond, by both application domain users

and text-mining experts.

The WP6 activity has a set goal to handle the design and development of the OpenMinTeD platform

services. In specific, it will (a) define the conceptual architecture and design specification of the

platform and (b) design and implement the set of services that the platform consists of. The

OpenMinTeD platform follows a distributed and modular approach to its architecture and the

deployment of its core services.

D6.7 report, the first of two reports (the second scheduled on M26), describes and summarizes

progress until M18, on specifying and optimizing how registered TDM services will run and scale on a

cloud environment. The described work falls under Layer 3 of the overall architecture: interoperability

to shared storage and computing resources. As TDM services require big data technologies to run in

parallel and within distributed cloud environments, effort on WP6 has focused on exploring,

experimenting, assessing and outlining the following:

• Deployment of OMTD workflow engine and TDM components (tools & services) that

constitute the workflow, on cloud infrastructures,

• Addressing scaling requirements, i.e. data size, parallel users, performance, etc.

To this end, choice of workflow software proved very crucial, since it effectively serves as the

connecting layer between the Registry and the actual execution of TDM services. The final decision

over Galaxy 1 was also influenced by existing and well documented Docker 2 integration work.

Arguments in favor of Galaxy were mainly: open source with community support, active community

which provides examples, help and even ready-to-use components, tested in cases very similar to

OpenMinTeD, adequate support for a variety of popular clouds, storage back-ends and similar

technologies, including Docker. Containerization through Docker will provide a method of defining and

running TDM components (tools & services) in a totally isolated, idempotent manner. Dockerizing the

components is required for registering them in the OpenMinTeD workflow ecosystem, since this solves

various interoperability issues that would otherwise emerge as consequence of using different OS,

programming languages, libraries, dependencies, etc. under a single platform.

Concerning scalability, a plethora of open source solutions exist and several have already been tried

out, particularly on two fronts: Docker-related schedulers (Docker Swarm, Apache Mesos and the

container orchestration platform Apache Marathon) and Hadoop-related ones (YARN). In specific:

1 https://galaxyproject.org/

2 https://www.docker.com/

OpenMinTeD Platform services distribution specification

• • •

Public Page 10 of 40

• we run some experiments on various tools (i.e., YARN with Slider, Mesos/Marathon, Docker

Swarm) on ~okeanos IaaS

• we have created re-usable know-how (setup guides) on how to install and deploy these services

• we have a tested solution for running and deploying Hadoop clusters on ~okeanos

• work on storage backend support has also started, towards developing an API connector

between Galaxy and GRNET Pithos+ cloud object storage system.

OpenMinTeD Platform services distribution specification

• • •

Public Page 11 of 40

2. OpenMinTeD Services in a Nutshell
The following figure illustrates the high-level architecture of the OpenMinTeD platform [1]:

Figure 1. Overall Architecture of the OpenMinTeD Platform

OMTD will offer a Registry service for storing, browsing, downloading, searching and managing various

resources such as publications, processing components (e.g. a named entity tagger or sentence

splitter) and languages resources (e.g. machine learning models, lexica, thesauri). These resources will

be registered and, concerning publications, externally linked in OMTD by exploiting harvesting

capabilities of OpenAIRE and CORE, (e.g. OAI-PMH, FTP, etc.), specified as Docker files for containerized

execution, and documented with high quality metadata. The Workflow Editor service of the platform

will guide users via an appropriate UI (based on the respective metadata) in creating interoperable

workflows of TDM components; the workflows will be executed from the Workflow service in a cloud

infrastructure or locally, using the above Dockerfiles. OMTD users will be able to annotate the

publications (texts) using the Annotation Editor service and create datasets which can be used in

workflows; e.g. for evaluation purposes. Services under the OMTD Enabling Layer will facilitate

monitoring, automatic deployment and re-scaling of the platform. Also, appropriate Authentication

and Authorization Infrastructure (AAI) services will support the platform. All the aforementioned

OpenMinTeD Platform services distribution specification

• • •

Public Page 12 of 40

services will communicate via appropriate REST-based APIs and will be integrated and offered in a

uniform way via the web Portal of OMTD.

OpenMinTeD Platform services distribution specification

• • •

Public Page 13 of 40

3. Deploying OMTD workflow services

 Introduction

In this Section, we explore how all OpenMinTeD services will be tuned to execute dockerized

workflows on Galaxy. After presenting the basic components, we define the operation flow of the

system. We briefly describe the process of dockerizing TDM tools and services and clarify the

interconnection between Galaxy, the Registry service and the Pithos+ storage backend. We will use a

few basic use cases as guides to help demonstrate how the system will operate from the point of view

of an administrator, a task or workflow developer, and the OpenMinTeD users.

Cloud computing resources to support the above activities are provided for the purposes of the project

by GRNET. GRNET currently operates a Data Center in Athens, Greece, comprising a large number of

physical servers, storage servers and the necessary network infrastructure that allows high-speed

interconnectivity with the pan-European research network GÉANT. GRNET has developed its own in-

house cloud computing solution named ~okeanos and has been offering IaaS cloud services for free to

the Greek Research and Academic community (primarily) and to European researchers in the context

of relevant EC projects.

More details about ~okeanos and its integration with Galaxy and container technologies focusing on

the Docker tool ecosystem are documented on D8.1 Infrastructure report [2].

 Use cases

3.2.1 Accessing results

The following use cases, in order of simplicity, are indicative of the complexity in terms of services

interoperability; the first requires the least operations and interconnections, the last involves most of

the infrastructure and supporting services of the OMTD system.

3.2.2 Running existing workflows

In this use case, we assume users are authenticated and authorized to use the system. They find an

already registered and installed workflow and run it on OMTD datasets, i.e. a set of publications.

3.2.3 Setting up TDM components and workflows

We assume users possess the authority and skills to create their own workflows. They are interested

not only on running them, but also on sharing them with selected colleagues or the community.

3.2.4 Customized cases

The system may allow using datasets stored on custom and external locations, storing and exporting

intermediate results and plugging additional functionalities on specific workflows.

OpenMinTeD Platform services distribution specification

• • •

Public Page 14 of 40

 System Overview

3.3.1 The Portal

The OMTD Portal acts as the front end and the UI of the system, guiding users to authenticate and

authorize themselves. Authentication and Authorization is delegated to the AAI service and, if

successful, the control returns to the Portal, updated with the actions permitted for this particular

user.

3.3.2 The Registry

The Registry service maintains a record of TDM resources and data sources and acts as a coordinator

for data source handling and workflow management. It also manages access control to related services

(e.g., workflow editor, data source repositories), validates text and data mining resources and handles

dataset storage and sharing issues. The Registry features a UI to let users look up and reuse resources,

data sources and workflows (e.g., run an existing workflow on Galaxy). Most of these operations (e.g.,

access control, workflow execution, data storage) are delegated to other components in a transparent

manner.

3.3.3 The Galaxy workflow engine

Galaxy is a tested, well-known workflow engine supported by a growing community. It will be placed at

the heart of the OpenMinTeD system and it will be responsible for running dockerized workflows on

corpora stored on the Pithos+3 storage backend. Pithos+ will also accept and store the result data (e.g.

annotations). Users will be able to access Galaxy and watch the progress of their workflows, track

possible errors and register their own components.

In order to achieve access control, there must be a mapping between Registry authorized and Galaxy

users. From the Galaxy point of view, access control is handled by the Registry service.

Galaxy can read from and store to external storage back-ends (e.g. Amazon S34) or at the local storage

(e.g., a block storage device attached on the Galaxy VM).

3.3.4 Marathon/Mesos

Each workflow consists of a series of individual TDM components, which must be somehow executed.

The workflow engine will delegate this operation to Marathon5 and Mesos6. These tools can provision

virtual machines on the cloud and run tasks (e.g., as Docker containers). They feature load balancing,

extensibility, adequate monitoring and logging. This subsystem will serve as an intermediate layer

between Galaxy and the cloud infrastructure.

3 https://pithos.okeanos.grnet.gr

4 http://galaxy.readthedocs.io/en/stable/lib/galaxy.objectstore.html

5 https://mesosphere.github.io/marathon/

6 http://mesos.apache.org/

OpenMinTeD Platform services distribution specification

• • •

Public Page 15 of 40

3.3.5 The Pithos+ Storage backend

Pithos+ is the object storage service of GRNET ~okeanos7 infrastructure; it can be accessed from

external applications through the Pithos REST API part of the kamaki python library8. Kamaki library is

an open source, multipurpose, interactive CLI tool and client development API for managing Synnefo as

well as other OpenStack clouds.

In the context of OpenMinTeD, there are currently two implementation options available for input

corpora and output results: Galaxy-accessible block device (e.g., a volume attached on the VM running

Galaxy) and Pithos+ (cloud storage backend). The system will make use of the sharing capabilities of

Pithos+ to provide result publication and implement access restrictions when needed.

 Dockerizing TDM components

In the context of OpenMinTeD, workflows are composed of simple autonomous components (TDM

tools) chained together (e.g., Tokenization -> Sentence Splitting -> POS Tagging -> Lemmatization ->

Named Entity Recognition). OMTD task developers must conform to certain guidelines and rules in

order to ensure compatibility (i.e. interoperability) with other components, reusability in versatile

contexts and reduced maintenance complexity. Last, but not least, components must be able to be

spawned by the workflow engine. These goals are achieved by bundling each component (or a set of

components) as a Docker container. Developers working with Docker commonly refer to this process

as “dockerization”.

3.4.1 Docker tools and terminology

Docker is a collection of tools for isolating software subsystems by utilizing the container capabilities of

(primarily) the Linux kernel and other operating systems. Docker images and containers can be

developed and run on all popular Linux distributions, Mac OS X and Windows. More details and

examples can be found in the Docker documentation pages9.

A Docker image is a recipe for building isolated containers. It is built from a Dockerfile which is

typically located at the root of the code tree, maintained by the task developers and contains

instructions to the Docker engine e.g., what base Linux distribution should be used, software

requirements to be installed, code repositories, compiling instructions, networking settings,

environment variables etc. More information can be found in the official Dockerfile reference10.

Typically, developers execute “docker build” to build Docker images from a Dockerfile and release

them on an appropriate repository (registry). Docker Hub11 provides a free publicly available Docker

7 https://okeanos.grnet.gr

8 https://www.synnefo.org/docs/kamaki/latest/developers/clients-api.html

9 https://docs.docker.com/

10 https://docs.docker.com/engine/reference/builder/

11 https://hub.docker.com/

https://okeanos.grnet.gr/
https://www.synnefo.org/docs/kamaki/latest/developers/clients-api.html
https://docs.docker.com/
https://docs.docker.com/engine/reference/builder/
https://hub.docker.com/

OpenMinTeD Platform services distribution specification

• • •

Public Page 16 of 40

repository but since the respective software is open source, a similar repository can be setup internally

(private registry) to serve the needs of OpenMinTeD. It features archiving, version tags and searching.

In order to use a Docker image, users must execute the “docker run” command, which creates an

instance of the Docker image. These instances are called Docker containers and can be started,

stopped, snapshotted and updated. When a Docker container is started successfully, the application is

up and running. Multiple containers can be created and run simultaneously from the same image, even

on the same VM. Typically, a TDM task software wrapped as a Docker image should contain

instructions for starting and parameterizing a Docker container.

3.4.2 Dockerizing for OpenMinTeD

A workflow engine would spawn (“docker run”) a container with predefined options that ensure data

chaining between components. Since the output of a component is the input of its successor, the

workflow engine should be able to let each component container know where the input and the

output should be placed, using Docker volumes and, optionally, environment variables.

A Docker volume is a mapping between a location in the host file system and the container file system,

offering persistent storage. It can be seen as a way to bi-directionally exchange data between the

component and the workflow engine.

For instance, to execute task N in a succession of tasks, the workflow engine may execute a command

like this (mounting a host directory as a data volume for the container using the “:” designator):

$ docker run \

 - v /workflow/datasets/input - for - task - N:/container/input \

 - v /workflow/datasets/input - for - task - N- plus - 1:/container/output \

 task - N- image:latest

When the task has completed its execution, the engine will proceed to the next task (N plus 1) in the

workflow:

$ docker run \

 - v /workflow/datasets/input - for - task - N- plus - 1:/container/input \

 - v /workflow/datasets/input - for - task - N- plus - 2:/container/output \

 task - N- plus - 1- image:latest

 Access control and accounting

There are three types of roles in the OpenMinTeD system:

(1) Starting from the bottom, virtual resources are assigned and quoted to infrastructure users,

who deploy and maintain the system components.

OpenMinTeD Platform services distribution specification

• • •

Public Page 17 of 40

(2) Each component may feature its own role management, which should be kept as simple as

possible.

(3) At the top, the Registry implements the end user access management by utilizing the features

of each component and by relying on a separate authentication and authorization component.

3.5.1 Infrastructure layer

A core design choice regarding cloud infrastructure is to deploy all services (Portal, Registry, Workflow

Editor & Execution, etc.) in one single cloud account. More than one account can be created if such a

requirement is inferred by the system design, but even in that case, cloud accounts will not correspond

to end user accounts. However, running all services in one account reduces deployment and

maintenance complexity without loss of performance or availability. Infrastructure accounting, statistics

and quotas are all managed in the context of this single account. One OpenMinTeD account will keep

the ownership of all infrastructure: virtual machines running the system components, virtual machines

provisioned to host Docker containers, Pithos+ storage space, public IPs and inter-component

networking infrastructure. Logs and statistics related to the infrastructure utilization are kept and

watched by this single user.

3.5.2 OpenMinTeD components layer

The core components of the platform (see Figure 1. Overall Architecture of the OpenMinTeD Platform)

may define their own user roles. In specific, the Registry and the Galaxy components will support their

own kinds of user roles which can be mapped/linked (if needed) to the user roles defined and

supported by the AAI service. For instance, a user with read-only access rights (e.g., can only have

access to results shared with them) will not be assigned a Galaxy account, while a workflow owner

must have access to either an atomic or a shared Galaxy account, automatically handled by the system.

These accounts may be prepared in advance (e.g., a pool of Galaxy accounts) or created on demand to

serve each individual need.

3.5.3 End user layer

The entry point for each user is the portal front-end application. Authentication and authorization is

delegated to the AAI component. The AAI component should maintain a directory of roles and access

rights for each user. Actual resources will be hidden from the end user i.e., the virtual machines running

the Docker containers on which user tasks are executed, or the Pithos+ storage location where the user

uploads datasets or from which they download results.

Access to OpenMinTeD components may also be transparent, depending on the user role. The details

of how and where a user’s workflow is executed can be hidden from them, but for some users the

system may authorize direct workflow engine access (Galaxy as a Service).

OpenMinTeD Platform services distribution specification

• • •

Public Page 18 of 40

 Operation flow and component interconnection

In this subsection, we will describe how components interconnect, using some general use cases as

guides and examples.

The entry point for every user is the portal front-end. User authentication procedure happens there,

which is typically delegated to the AAI component. The latter can authenticate federated users and

respond back to the portal, providing useful authorization information as well.

The authorization process is handled by the Registry. A mutable user directory (e.g., an LDAP system)

should be maintained (either in the Registry or as a separate component), in order to restrict or provide

access to datasets, results and workflows. Based on this information, the Registry component can

decide if the users can upload datasets, run workflows or have access to already committed jobs.

In use case 3.2.1 (Accessing results), the Registry must provide a searching mechanism. Each piece of

data (sources, results) is stored in Pithos+ and has a public URL assigned to it. All public URLs are

preserved in the Registry database as well. The Registry service checks whether the user is authorized

for this piece of data, and if they are, the corresponding Pithos+ public link is provided.

In use case 3.2.2 (Running existing workflows), the user searches for predefined workflows and

attempts to run them on custom datasets (corpora of publications) stored on an external system (e.g.,

the user’s local disk or a storage location on another cloud). As pointed in Section 2, in most cases this

should be done by creating and gathering the datasets from OpenAIRE/CORE directly within the OMTD

platform. An authorization step follows and, if successful, the user can provide the dataset through e.g.

an upload web form. The Registry uses the Pithos+ API to upload this dataset to Pithos+, in a Pithos+

path hidden from the user.

The Registry communicates with Galaxy through the Galaxy API and requests access to a Galaxy

account which owns the corresponding workflow. Registry requests Galaxy to execute the workflow,

thus passing control to the latter. Galaxy pulls the user dataset from Pithos+ using a kamaki12 backend

and then delegates the execution of the first container to Mesos/Marathon. The latter decides on

which virtual machine this container should run on, returning a handle to Galaxy. In the case of two

successive components, when the first is completed, Mesos/Marathon is called to run the next one,

and so on until the whole workflow is consumed. Galaxy can be configured to run components in

parallel as well. The results are pushed to Pithos+ through the same kamaki backend and a new Pithos+

location is returned to Registry along with the control of the flow.

Finally, a link to the results is revealed to the user, who can proceed to download and use them.

In use case 3.2.3 (Setting up TDM components and workflows), the users are provided with guidelines

on how to dockerize TDM components for OpenMinTeD. This information will be publicly accessible, so

12 https://www.synnefo.org/docs/kamaki/latest

https://www.synnefo.org/docs/kamaki/latest

OpenMinTeD Platform services distribution specification

• • •

Public Page 19 of 40

that users can compose their own OMTD-compliant components. When they decide to register them

and after they pass through the authorization check, the Registry picks and pushes their components to

the Docker private repository. Although the components are internally available through the Docker

repository, an auditing procedure (a human managed moderation step) may be required before the

Registry marks them as ready for the workflow engine.

In order to create a workflow, the Registry communicates with Galaxy through the Galaxy API and

requests access to a Galaxy account, through which the user is redirected to the Galaxy UI. Now, TDM

components can be selected, removed, arranged and connected in a graphic manner. Each TDM

component corresponds to a Docker image in the internal (private) Docker repository. The information

on the available components is maintained in the Registry, which controls how it will be provided to

Galaxy, typically with a structured file containing a URL to the component. Since each TDM component

is a Docker image, the URL is the image location, so that Galaxy can pull it directly from the repository.

In the next step, control passes to Galaxy. The user is given access to the Galaxy graphic editor, where

they can compose their workflows by chaining individual components. When they are done, the control

returns to the Registry where they are required to provide metadata (e.g. workflow descriptions).

Running the workflow is already covered in use case 3.2.2.

In use case 3.2.4 (Customized cases), a user needs access to intermediate results or custom Galaxy

features (e.g. errors). Assuming they are authorized, they can deal directly with Galaxy.

Special Docker images can be built with appropriate software and configurations in order to store

intermediate results at a place where the user has access, or extract meaningful information by

processing intermediate data. Component developers can build and chain custom Docker images of

this nature or use the ones provides by OpenMinTeD. A typical intermediate image would, for instance,

copy the incoming data to a cloud location accessible by the user and then return to Galaxy.

OpenMinTeD Platform services distribution specification

• • •

Public Page 20 of 40

4. Distributed processing and storage with Hadoop

 Introduction

Besides the above described Galaxy workflow engine system, the project has stated explicitly its

interest on big data technologies, especially Hadoop, for delivering and scaling TDM components.

One option for this is to describe, register, and make Hadoop-ized TDM components searchable in the

OMTD Registry, the latter could then launch these components in an already existing multi-node

Hadoop cluster (or launch them in a temporary one). TDM components can be expressed in the

MapReduce paradigm and ported to Hadoop with minimal effort, since various tools like tokenization,

splitting, lemmatizing, etc. are perfectly fit for the shared-nothing architecture of Hadoop.

Another option is to use the Docker container executor13 which basically launches dockerized TDM

components as Hadoop 2.x (YARN) containers.

A third option is to use Hadoop-based programs in Galaxy workflows (attempts are documented in

https://github.com/crs4/hadoop-galaxy and https://wiki.galaxyproject.org/CloudMan/Hadoop).

Apache Mesos also provides a Hadoop environment in https://github.com/mesos/hadoop.

In the rest of this section, we provide an overview of the Hadoop ecosystem. Running under Hadoop

can benefit from the ready software stack to run and distribute services at a large number of nodes,

compose Hadoop jobs into workflows with Oozie14, as well boost speed execution with in-memory

processing through frameworks such as Spark15 and Flink16. We further describe some associated

experiments in the annexes 5, 6, 7.

 Scaling with MapReduce & Hadoop

MapReduce is the most popular programming model for big data processing. Each algorithmic problem

and its associated data are sliced in small chunks and assigned for execution to each cluster node (Map

phase). Afterwards, results from each node are synthesized to compute the final solution (Reduce

phase). Basic principles of this model are the transfer and execute of code to the node that owns the

data chunk (“move code to the data”) and the linear scanning of data, from start to end (“batch

mode”).

Apache Hadoop17 platform is the most widely used implementation of the above model. It is open

source, general application software, and does not require expensive hardware or storage, in contrast

13 https://hadoop.apache.org/docs/r2.7.3/hadoop-yarn/hadoop-yarn-site/DockerContainerExecutor.html

14 https://oozie.apache.org

15 http://spark.apache.org/

16 http://flink.apache.org/

17 http://hadoop.apache.org/

https://github.com/crs4/hadoop-galaxy
https://wiki.galaxyproject.org/CloudMan/Hadoop
https://github.com/mesos/hadoop
https://hadoop.apache.org/docs/r2.7.3/hadoop-yarn/hadoop-yarn-site/DockerContainerExecutor.html
https://oozie.apache.org/
http://spark.apache.org/
http://flink.apache.org/
http://hadoop.apache.org/

OpenMinTeD Platform services distribution specification

• • •

Public Page 21 of 40

it can horizontally scale out with commodity hardware. It allows users to develop and execute

distributed applications on very large datasets without worrying about the details and technicalities of

parallelization, data replication, and fault-tolerance.

In a typical Hadoop setup, a master node is responsible for managing both the data (datanode VMs)

and processing (tasktracker VMs) available resources, called “slave” nodes. HDFS is the distributed data

storage system of Hadoop. In general, files in Hadoop are split into chunks of configurable size (usually

64MB or 128MB) and each chunk is stored in a datanode, i.e. a VM that stores data. The namenode

daemon in the master VM holds a metadata table that contains the necessary information to construct

a big data file from its component chunks. HDFS also stores each chunk in more than one datanodes

(replication factor, again configurable) in order to achieve fault-tolerance when a datanode becomes

unavailable. HDFS has some but not all capabilities of a full filesystem. It is generally designed towards

few and big data files that are processed from start to end, and cannot be appended.

Around the Hadoop system (called Hadoop commons) which basically consists of HDFS and the

execution mechanism for running MapReduce jobs has evolved a full ecosystem to cover needs not (or

not easily) expressed with the original MapReduce platform. This multitude of software and

frameworks covers a wide range of applications:

• Workflow engines on MapReduce jobs, such as Oozie,

• NoSQL databases and columnar databases such as Hive and HBase,

• Machine Learning libraries and toolsets such as Mahout and MLib,

• Data ingestion architectures such as Kafka and Flume,

• Lambda architectures to handle both batch and real-time data such as Spark and Flink,

• Complete solutions, with rich GUI and a plethora of pre-installed components, either free or

commercial traits such as Cloudera, Hortonworks and MapR.

4.2.1 YARN (Hadoop 2.x)

The next generation (Hadoop 2.x) of the original Apache Hadoop platform is YARN (Yet Another

Resource Negotiator). YARN is a resource management platform aiming primarily at solving the scaling

issues MapReduce faced when deploying clusters with a huge number of nodes (in the range of

thousand nodes). Two separate daemons have the responsibility to (i) handle the cluster nodes (Node

Manager) and (ii) manage each application’s lifecycle (Application Master). The latter negotiates

cluster resources with the former – resources are expressed with the term Container; each Container

has an upper memory limit – and then executes the application processes inside the Containers. In this

sense, YARN is more abstract than MapReduce, in fact a MapReduce job is just one type of jobs that

can be executed inside a YARN cluster. In summary, the YARN architecture improves the performance

of Hadoop applications and provides support for a wider range of applications besides MapReduce,

and is often called as “the Hadoop OS” since it implements process management and monitoring of

different clients in a multi-tenant environment, security policies, and high-availability.

OpenMinTeD Platform services distribution specification

• • •

Public Page 22 of 40

 Hadoop on cloud infrastructure

4.3.1 Generic architecture

Provisioning a YARN cluster in a cloud setting means basically provisioning and configuring VMs with

the Hadoop (or any other ecosystem) software on a number of VMs inside a cloud infrastructure.

Alternatively, one can use automated distributions from Hadoop ecosystem vendors that provision,

install and configure a fully functional YARN cluster. These solutions (some free and commercial) are

provided by:

• Hortonworks Data Platform, http://hortonworks.com/downloads/#data-platform

• Cloudera Manager, https://www.cloudera.com/products/cloudera-manager.html

• MapR, https://www.mapr.com/get-started-with-mapr

• Apache Ambari, https://ambari.apache.org

And the following are commercial offerings:

• Amazon EMR, https://aws.amazon.com/emr/

• Google Cloud, https://cloud.google.com/hadoop/

4.3.2 GRNET cloud with ~orka

~orka18 is a cloud-based platform for deploying and running big data analytics, using the Hadoop

ecosystem. It is designed and developed in the context of GRNET e-Science project19, and provided to

the members of Research and Academic Community as an ~okeanos-powered service. The main goal is

to remove the complexity for researchers to manually provision, deploy and manage multi-node

Hadoop clusters.

With ~orka, big data deployments over ~okeanos infrastructure are easily configured, spawned and

maintained. There is a variety of mature, well established tools and solutions centered around Hadoop:

• Create YARN clusters with selected ~okeanos flavors (hardware specifications) for master and
slave nodes

• Choose from a number of pre-cooked images:

o Hadoop Core

o Cloudera

o Hue (Hue User Interface)

o and a consolidated Ecosystem image with: Pig, Hive, HBase, Oozie, Spark, Flume

• Run workflows with Oozie (a workflow scheduler system for managing Apache Hadoop jobs)

• Stream external data into HDFS with Flume

• Manage the Hadoop cluster (Start, Stop, Format, Destroy)

18 https://okeanos.grnet.gr/platforms/orka/

19 https://github.com/grnet/e-science/

http://hortonworks.com/downloads/#data-platform
https://www.cloudera.com/products/cloudera-manager.html
https://www.mapr.com/get-started-with-mapr
https://ambari.apache.org/
https://aws.amazon.com/emr/
https://cloud.google.com/hadoop/
https://okeanos.grnet.gr/platforms/orka/
https://github.com/grnet/e-science/

OpenMinTeD Platform services distribution specification

• • •

Public Page 23 of 40

• Scale the Hadoop cluster (Add, Remove nodes)

• Use Pithos+ as a storage backend, run MapReduce algorithms with input and output directly
from/to Pithos+ files

• Export the Hadoop cluster metadata and algorithmic scripts, so that the algorithm can be
replayed later, in the same or a new cluster, with the same or different parameters

• Create own pre-cooked images, and add them to the ~orka dropdown list of available images

~orka services are available through a Personal Orka Server's dashboard (GUI) as well as a command

line interface (CLI). Both access types are based on a REST-API, that is also provided to the end users.

4.3.3 Pithos+ as HDFS storage backend

By default, HDFS uses the native disks of the namenodes to store and retrieve data. Connecting HDFS

to Pithos+ storage backend provides a range of advantages for the ~okeanos ecosystem:

• OMTD users can access a larger storage, based on their quota, that can surpass the available

disk space on the namenode VMs

• Exploit native Pithos+ de-duplication; Many corpora may have large parts matching with pre-
existing corpora. Thanks to de-duplication, we can save on storage space and upload time

• Easier sharing and moving of big files between ~okeanos users and/or other Hadoop clusters

In order to bring these benefits to ~okeanos users, ~orka has implemented a HDFSėPithos+

connector20, similar to the one natively supplied to Hadoop users for the Amazon S3 filesystem21. The

connector effectively creates a Hadoop Compatible File System (HCFS), with a “pithos:// ” namespace

which allows to list files, copy files between Pithos+ and namenode storage and provide Pithos+ files to

MapReduce jobs. All these commands are also available out-of-the-box from the ~orka CLI.

 Conclusion

During the first 18 months of WP6 work, the consortium has thoroughly explored options and finalized

a plan to offer TDM components as Docker images and chain them with the Galaxy workflow software

at a scalable multi-VM environment with Swarm and Mesos/Marathon. In the following period, the

Dockerization of TDM components has to be geared up, so as the OMTD Portal/Registry can offer

complete end-to-end workflows running in the cloud. Storage should also have to be taken care of,

with Pithos+ being a fully functional storage backend for Galaxy workflows. Finally, we have to arrive at

what scale and how Hadoop jobs can be integrated into Galaxy.

20 https://github.com/grnet/e-science/tree/master/pithosfs

21 https://wiki.apache.org/hadoop/AmazonS3/

https://okeanos.grnet.gr/support/user-guide/platforms-how-to-login-to-my-personal-orka-server/
https://escience.grnet.gr/static/mkdocs/site/cli/index.html
https://github.com/grnet/e-science/tree/master/pithosfs
https://wiki.apache.org/hadoop/AmazonS3/

OpenMinTeD Platform services distribution specification

• • •

Public Page 24 of 40

5. Annex 1: Run Hadoop on Docker Swarm
Docker Swarm22 offers native clustering for Docker. It turns a pool of Docker hosts into a single, virtual

Docker host. Because Docker Swarm serves the standard Docker API, any tool that already

communicates with a Docker daemon, as it happens with Galaxy and dockerized TDM services in

OMTD context, can use Swarm to transparently scale to multiple hosts.

The following is a step-by-step guide to deploy a non-trivial application over a cluster of Synnefo VMs

running interconnected Docker containers. The non-trivial application of choice is Hadoop, because it is

distributed and provisioning, monitoring, scaling and accounting are meaningful requirements.

 Setup up the Swarm cluster

The Docker tools we use are:

• docker-engine: the basic docker application for building images and running containers

• docker-machine: a tool for provisioning hosts in order to be docker-ready, as well as to prepare

containers for participating in docker clusters

• consul: a service-discovery application

• docker-swarm: container cluster manager

• docker-UCP: a higher-level tool for managing the cluster, comes with a UI

In this example, we have used 4 VMs:

• the "admin" VM is loaded with tools for the cluster administrator. In a real-life scenario, it could

be the laptop or the PC of the admin.

• A VM for consul.

• A VM for the swarm master. It can also run some Docker containers, if the swarm master

decides it automatically.

• A VM for running Docker containers. Adding more VMs like this is equivalent to scaling up the

cluster resources.

The image id used corresponds to an Ubuntu server LTS image, while the flavour corresponds to a 4

core, 4MB RAM, 20 GB VM. These requirements were sufficient for our tests.

Setup the admin machine

In this example, we are going to create an admin VM, but you can use your local host if instead. We are
naming the admin VM "docker 0":

22 https://www.docker.com/products/docker-swarm , https://docs.docker.com/swarm/overview/

OpenMinTeD Platform services distribution specification

• • •

Public Page 25 of 40

$ kamaki server create --name "docker 0" --image-id fbfefd37-755a-4746-94ce-8d6d75c279f6 --flavor-id 25 -p

/home/user/.ssh/id_rsa.pub,/home/user/.ssh/authorized_keys,user,user,0600 --project-id a6f26140-0af2-4e52-

9984-51a1df051619 -w

Login with ssh and update, upgrade:

$ sudo apt update -y && sudo apt upgrade -y

Install docker-engine:

$ sudo apt-get install apt-transport-https ca-certificates

$ sudo apt-key adv --keyserver hkp://p80.pool.sks-keyservers.net:80 --recv-keys

58118E89F3A912897C070ADBF76221572C52609D

$ echo deb https://apt.dockerproject.org/repo ubuntu-trusty main > /etc/apt/sources.list.d/docker.list # for Ubuntu

Trusty

$ sudo apt update

$ sudo apt-get purge lxc-docker

$ apt-cache policy docker-engine

$ sudo apt-get install docker-engine

$ sudo service docker start

Install docker-machine and as root:

curl -L https://github.com/docker/machine/releases/download/v0.7.0/docker-machine-`uname -s`-`uname -m` >

/usr/local/bin/docker-machine && \

chmod +x /usr/local/bin/docker-machine

Also, generate a pair of keys to be used for provisioning and managing the nodes of the cluster::

$ ssh-keygen -t rsa -b 4096

(passwordless)

Install/setup kamaki:

$ sudo apt-get install python-software-properties

$ sudo add-apt-repository ppa:grnet/synnefo

$ sudo apt-get update

$ sudo apt-get install kamaki

$ kamaki config set cloud.~okeanos.url <Synnefo authentication URL>

$ kamaki config set cloud.~okeanos.token <Synnefo user token>

OpenMinTeD Platform services distribution specification

• • •

Public Page 26 of 40

Create 3 Synnefo VMs

From the admin machine, create three VMs. Make sure to allow PKI root access::

$ kamaki server create --name "docker " \

--image-id fbfefd37-755a-4746-94ce-8d6d75c279f6 --flavor-id 25 \

-p /home/user/.ssh/id_rsa.pub,/root/.ssh/authorized_keys,root,root,0600 \

--project-id a6f26140-0af2-4e52-9984-51a1df051619 -w --cluster-size 3

In this example, we created three identical VMs for simplicity, using the "--cluster-size" option, but you
can create each VM separately if needed.

Setup consul (service discovery)

Docker can use many different service discovery systems, but this is the one used on their guides. We
don't currently have strong preference for Consul, except that it seems to work with docker tools.
Provision this VM using docker-machine:

$ docker-machine create --driver generic --generic-ip-address <docker 1 IP>\

--generic-ssh-key /home/user/.ssh/id_rsa consul

Now, setup the environment on admin machine to manage the (remote) consul container:

$ eval $(docker-machine env consul)

$ docker run -d -p "8500:8500" -h "consul" progrium/consul -server -bootstrap

Setup swarm node

Swarm master will run on VM docker 2. The procedure is now familiar:

$ docker-machine create --driver generic --generic-ip-address <docker 2 IP>\

--generic-ssh-key /home/user/.ssh/id_rsa --swarm --swarm-master\

--swarm-discovery="consul://$(docker-machine ip consul):8500"\

--engine-opt="cluster-store=consul://$(docker-machine ip consul):8500"\

--engine-opt="cluster-advertise=eth1:2376" swarm-master

Provision a swarm node

We already have a spare VM (docker 3), so we don't need to:

$ docker-machine create --driver generic --generic-ip-address <docker 3 IP>\

--generic-ssh-key /home/user/.ssh/id_rsa --swarm \

--swarm-discovery="consul://$(docker-machine ip consul):8500"\

OpenMinTeD Platform services distribution specification

• • •

Public Page 27 of 40

--engine-opt="cluster-store=consul://$(docker-machine ip consul):8500"\

--engine-opt="cluster-advertise=eth1:2376" swarm-node

Setup overlay network

Create an overlay network. Don't forget to "eval" your swarm-master environment first:

$ eval $(docker-machine env --swarm swarm-master)

$ docker network create --driver overlay cluster-network

Setup docker UCP

Typically, we can setup an overlay network to complete the cluster setup. This will be done
automatically by the UCP service.
Setup UCP on docker 2 (the swarm-master VM):

$ docker-machine ssh swarm-master

$ docker run --rm -it -v /var/run/docker.sock:/var/run/docker.sock \

--name ucp docker/ucp install -i --swarm-port 3367 \

--host-address <swarm-master IP>

(you will need to set a password for UCP admin)

Check your UCP at https://<docker 2 IP>:3367
UCP requires a license e.g. to add new nodes to the cluster. There is a free trial license for testing.

Run Hadoop on the cluster

To deploy a Hadoop system on our swarm cluster, we need to be provided with a Hadoop docker
image e.g., "kiwenlau/hadoop:1.0".
We will set up a hadoop master with two slaves:

$ docker -H $(docker-machine ip swarm-master):3376 run -itd --net cluster-network -p 50070:50070 -p 8088:8088

--name hadoop-master --hostname hadoop-master kiwenlau/hadoop:1.0

$ docker -H $(docker-machine ip swarm-master):3376 run -itd --net cluster-network --name hadoop-slave1 --

hostname hadoop-slave1 kiwenlau/hadoop:1.0

$ docker -H $(docker-machine ip swarm-master):3376 run -itd --net cluster-network --name hadoop-slave2 --

hostname hadoop-slave2 kiwenlau/hadoop:1.0

Each Hadoop element runs on a container. The location of each container is managed by the swarm-
master. We can use UCP to check were everything runs, or even from the command line.
Check what containers run on what VM:

$ docker -H(docker-machine ip swarm-master):3376 ps

OpenMinTeD Platform services distribution specification

• • •

Public Page 28 of 40

$ docker -H(docker-machine ip swarm-node):3376 ps

In some of our examples, the Hadoop master was installed on the swarm-node, while one or two of
the slaves on the swarm-master. Still, Hadoop admins do not need this information. They can manage
their Hadoop containers as if they run on their local system.
Let's start the Hadoop cluster and run a sample WordCount job on it:

$ docker exec -it hadoop-master bash

./start-hadoop.sh

./run-wordcount.sh

Hadoop offers UI access for the cluster on http://<hadoop master IP>:8088/cluster and HDFS UI
access on http://<hadoop master IP>:50070 .
Find the Hadoop master IP with simple commands like:

$ docker exec -it hadoop-master ifconfig

OpenMinTeD Platform services distribution specification

• • •

Public Page 29 of 40

6. Annex 2: Run Hadoop YARN on Slider
YARN, being primarily the virtual cluster manager and resource scheduler of Apache Hadoop, can be

used for other distributed applications as well. This is achieved by configuring YARN to handle e.g.

Docker containers and also by providing a custom scheduler to serve the application needs. The

process is greatly simplified with Apache Slider23, which automates the deployment of distributed

applications (with or without Docker) on an existing YARN cluster. Scaling, monitoring and application

handling are also improved with Slider, either from the “servers” command line interface or through

the Slider REST API.

Setup

The following steps are required to successfully run YARN jobs with Slider.

• Create 3 VMs with kamaki

• Setup Hadoop master

• Setup a Hadoop cluster

• Install slider

• Run docker apps with slider

Provisioning

Create 3 VMs with kamaki, with the Hadoop images

kamaki server create --name "hadoop " --cluster-size 3 --image-id be029a82-d61b-4d44-9bb3-ec2c2911e631 --

flavor-id 18 --project-id a6f26140-0af2-4e52-9984-51a1df051619 -p

/home/user/.ssh/id_rsa.pub,/root/.ssh/authorized_keys,root,root,0600 -w

Setup Hadoop

For each of the created VMs, follow these steps:
Log as root and set the following variables:

HADOOP_PREFIX=/usr/local/hadoop-2.7.2

HADOOP_HOME=$HADOOP_PREFIX

HADOOP_COMMON_HOME=$HADOOP_PREFIX

HADOOP_CONF_DIR=$HADOOP_PREFIX/etc/hadoop

HADOOP_HDFS_HOME=$HADOOP_PREFIX

HADOOP_MAPRED_HOME=$HADOOP_PREFIX

HADOOP_YARN_HOME=$HADOOP_PREFIX

23 https://slider.incubator.apache.org

https://slider.incubator.apache.org/

OpenMinTeD Platform services distribution specification

• • •

Public Page 30 of 40

$HADOOP_CONF_DIR/yarn -site.xml

<configuration>

 <property>

 <name>yarn.nodemanager.container-executor.class</name>

 <value>org.apache.hadoop.yarn.server.nodemanager.DockerContainerExecutor</value>

 </property>

 <property>

 <name>yarn.nodemanager.docker-container-executor.exec-name</name>

 <value>docker</value>

 </property>

 <!-- For the cluster -->

 <property>

 <name>yarn.resourcemanager.hostname</name>

 <value>resourcemanager.<hadoop 1></value>

 <description>The hostname of the RM.</description>

 </property>

</configuration>
$HADOOP_CONF_DIR/hdfs -site.xml

<configuration>

 <property>

 <name>dfs.datanode.data.dir</name>

 <value>file:///usr/local/hadoop-2.7.2/hdfs/datanode</value>

 <description>Comma separated list of paths on the local filesystem of a DataNode where it should store its

blocks.</description>

 </property>

 <property>

 <name>dfs.namenode.name.dir</name>

 <value>file:///usr/local/hadoop-2.7.2/hdfs/namenode</value>

 <description>Path on the local filesystem where the NameNode stores the namespace and transaction logs

persistently.</description>

OpenMinTeD Platform services distribution specification

• • •

Public Page 31 of 40

 </property>

</configuration>
$HADOOP_CONF_DIR/core -site.xml

<configuration>

 <property>

 <name>fs.defaultFS</name>

 <value>hdfs://namenode.<hadoop 1 IP></value>

 <description>NameNode URI</description>

 </property>

</configuration>

Start Hadoop nodes and managers

#Start HDFS daemons

Format the namenode directory (DO THIS ONLY ONCE, THE FIRST TIME)

ONLY ON THE NAMENODE NODE

$HADOOP_PREFIX/bin/hdfs namenode -format

Start the namenode daemon

ONLY ON THE NAMENODE NODE

$HADOOP_PREFIX/sbin/hadoop-daemon.sh start namenode

Start the datanode daemon

ON ALL SLAVES

$HADOOP_PREFIX/sbin/hadoop-daemon.sh start datanode

Start YARN daemons

Start the resourcemanager daemon

ONLY ON THE RESOURCEMANAGER NODE

$HADOOP_PREFIX/sbin/yarn-daemon.sh start resourcemanager

OpenMinTeD Platform services distribution specification

• • •

Public Page 32 of 40

Start the nodemanager daemon

ON ALL SLAVES

$HADOOP_PREFIX/sbin/yarn-daemon.sh start nodemanager

Test it

$HADOOP_PREFIX/bin/hadoop jar \

$HADOOP_PREFIX/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar teragen \

-Dmapreduce.map.env="yarn.nodemanager.docker-container-executor.image-name=sequenceiq/hadoop-

docker:2.4.1" \

-Dyarn.app.mapreduce.am.env="yarn.nodemanager.docker-container-executor.image-

name=sequenceiq/hadoop-docker:2.4.1" \

1000 teragen_out_dir

$HADOOP_PREFIX/bin/hdfs dfs -cat teragen_out_dir/*

Install slider

Unfortunately, you will need Apache Maven and you then need to download Slider and install it with
maven.

apt install maven

export MAVEN_OPTS="-Xms256m -Xmx512m -Djava.awt.headless=true"

git clone https://git-wip-us.apache.org/repos/asf/incubator-slider.git -b develop

cd incubator-slider

mvn clean install

mvn clean site:site site:stage package -DskipTests

export SLIDER_HOME=/root/incubator-slider/slider-assembly/target/slider-0.92.0-incubating-SNAPSHOT-

all/slider-0.92.0-incubating-SNAPSHOT

Run with slider

Slider builds app packages based on three config files: appConfig.json (application specific overrides),
metainfo.json (more generic build configs) and resources.json (deployment instructions to yarn).
metainfo.json

{

 "schemaVersion": "2.1",

 "application": {

OpenMinTeD Platform services distribution specification

• • •

Public Page 33 of 40

 "name": "WORDPRESS",

 "components": [

 {

 "name": "WORDPRESS",

 "type": "docker",

 "dockerContainers": [

 {

 "name": "wordpress",

 "commandPath": "/usr/bin/docker",

 "image": "wordpress",

 "ports": [{

 "containerPort" : "8080"

 }]

 }]

 },

 {

 "name": "MYSQL",

 "type": "docker",

 "dockerContainers": [

 {

 "name": "mysql",

 "commandPath": "/usr/bin/docker",

 "image": "mysql:5.5",

 "ports": [{

 "containerPort" : "3306",

 "hostPort": "3306"

 }]

 }]

 }]

 }

}
resources.json:

{

OpenMinTeD Platform services distribution specification

• • •

Public Page 34 of 40

 "metadata": { },

 "global": { },

 "components": {

 "slider-appmaster": { },

 "MYSQL": {

 "yarn.role.priority": "1",

 "yarn.component.instances": "1",

 "yarn.memory": "512"

 },

 "WORDPRESS": {

 "yarn.role.priority": "2",

 "yarn.component.instances": "1",

 "yarn.memory": "512"

 }

 }

}

Now, let's deploy the app:

$SLIDER_HOME/bin/slider create SliPress --template appConfig.json --metainfo metainfo.json --resources

resources.json

OpenMinTeD Platform services distribution specification

• • •

Public Page 35 of 40

7. Annex 3: Run Hadoop YARN with GRNET ~orka

 Introduction

The following guides document how ~okeanos users can access and use ~orka services. Focus is given

on the available images, the creation of a cluster from the GUI and the respective CLI commands. Full

documentation about ~orka is provided from https://okeanos.grnet.gr/platforms/orka/ and

https://escience.grnet.gr/static/mkdocs/site/introduction/index.html.

 Information about ~orka images

In order to view all the available Hadoop distributions (images) the user selects, «Hadoop Images

Components», displays in a tabular format all the components comprising the pre-cooked Hadoop

images, their respective versions and their web homepages for further information:

Figure 2: Component of a selected Hadoop image

 ~orka overview page

After successful authentication, the user is redirected to the landing page, with an overview of all the

infrastructures created inside the application. There is information about Hadoop (YARN) clusters,

Virtual Research Environments, and Reproducible Experiments in a grid format:

https://okeanos.grnet.gr/platforms/orka/
https://escience.grnet.gr/static/mkdocs/site/introduction/index.html

OpenMinTeD Platform services distribution specification

• • •

Public Page 36 of 40

Figure 3: List of all created Hadoop clusters

 Creating a Hadoop cluster

The basic function of ~orka is to create a multi-node Hadoop cluster, through a friendly UI:

OpenMinTeD Platform services distribution specification

• • •

Public Page 37 of 40

Figure 4: Snapshot of ~orka Hadoop creation form

The following is a screenshot from a HUE (Hue User Interface) dashboard:

OpenMinTeD Platform services distribution specification

• • •

Public Page 38 of 40

Figure 5: List of all jobs in Hadoop cluster

 ~orka CLI examples

The following CLI command illustrate how to create a 10-node Hadoop cluster (each node with 4CPU

4GM RAM and 40GB of disk space):

$ orka create OMTD_Hadoop 10 4 4096 40 4 4096 40 Standard <project_name> --image=Ecosystem-on-Hue-

3.8.0

The following command lists info about this cluster (the create command has returned an id):

$ orka info <cluster_id>

To scale the cluster, use this command:

$ orka node add <cluster_id>

Command to start the Hadoop cluster:

$ orka hadoop start <cluster_id>

Command to stop the Hadoop cluster:

$ orka hadoop stop <cluster_id>

Command for putting a local file to HDFS:

$ orka file put <cluster_id> <remote_http_or_ftp_url> <hdfs_file_path>

OpenMinTeD Platform services distribution specification

• • •

Public Page 39 of 40

Command for putting a Pithos+ file to HDFS:

$ orka file put <cluster_id> pithos://<pithos_file_path> <hdfs_file_path>

OpenMinTeD Platform services distribution specification

• • •

Public Page 40 of 40

8. References

1. D4.3 – OpenMinTeD Functional Specifications
2. D8.1 - Infrastructure Operation Report

	1. Introduction
	2. OpenMinTeD Services in a Nutshell
	3. Deploying OMTD workflow services
	3.1 Introduction
	3.2 Use cases
	3.2.1 Accessing results
	3.2.2 Running existing workflows
	3.2.3 Setting up TDM components and workflows
	3.2.4 Customized cases

	3.3 System Overview
	3.3.1 The Portal
	3.3.2 The Registry
	3.3.3 The Galaxy workflow engine
	3.3.4 Marathon/Mesos
	3.3.5 The Pithos+ Storage backend

	3.4 Dockerizing TDM components
	3.4.1 Docker tools and terminology
	3.4.2 Dockerizing for OpenMinTeD

	3.5 Access control and accounting
	3.5.1 Infrastructure layer
	3.5.2 OpenMinTeD components layer
	3.5.3 End user layer

	3.6 Operation flow and component interconnection

	4. Distributed processing and storage with Hadoop
	4.1 Introduction
	4.2 Scaling with MapReduce & Hadoop
	4.2.1 YARN (Hadoop 2.x)

	4.3 Hadoop on cloud infrastructure
	4.3.1 Generic architecture
	4.3.2 GRNET cloud with ~orka
	4.3.3 Pithos+ as HDFS storage backend

	4.4 Conclusion

	5. Annex 1: Run Hadoop on Docker Swarm
	5.1 Setup up the Swarm cluster

	6. Annex 2: Run Hadoop YARN on Slider
	7. Annex 3: Run Hadoop YARN with GRNET ~orka
	7.1 Introduction
	7.2 Information about ~orka images
	7.3 ~orka overview page
	7.4 Creating a Hadoop cluster
	7.5 ~orka CLI examples

	8. References

